

The design, implementation, and evaluation of an
Internet-based eVoting system*

Christos Manolopoulos1, Anastasia Panagiotaki1, Dimitris Sofotassios1,
Paul Spirakis1, Yannis C. Stamatiou1,2

1Research Academic Computer Technology Institute,

N. Kazantzaki, University of Patras, 26500, Greece. emails: {manolop, panagioa,sofos,spirakis}@cti.gr
2University of Ioannina, Mathematics Department,

45110, Ioannina, Greece. email: istamat@uoi.gr

*This work has been partially supported by the General Secretariat of Research and Technology of
Greece, under the project PNYKA (project code ΔΕΛ_2, decision 8948/04.05.06), Operational Program

of Western Greece, 3rd Community Support Framework

Abstract
In this paper, we describe the stages for the design, implementation and evaluation of a
complete, Internet-based eVoting system for performing large-scale elections. Our focus was
on the application of trust modeling and risk assessment methodologies in conjunction with
strong cryptographic protocols and open source tools for improving the openness of the
system to public scrutiny. The resulting system has been successfully evaluated during an in-
field trial process that involved a mock-up election held for the Technical Chamber of Greece.

Keywords: eVoting, security protocol, cryptographic protocol, distributed system

1. Introduction
In sharp contrast to a number of Internet-based applications that have attracted
peoples’ trust over the past few years (e.g. tax declaration, eGovernment-related form
completion etc.), the widespread adoption of eVoting technologies still seems to be
out of reach. This can be attributed, mainly, to two reasons: a) Incidents of malicious
interventions or accidental faults in the system occur that raise suspicions about the
robustness and credibility of the system, b) The system designers and implementers
produce scant documentation with regard to critical issues and sensitive parts of the
system, as opposed to producing usually massive information with regard to system
installation, operation, maintenance and fine tuning. ACM’s special issue on eVoting
(see [CACM (2008)]) gives an excellent and in depth account of the general issues
involved in people’s mistrust in eVoting systems.

There is much ongoing research in the development and analysis of new trust
management models for complex and dependable computer systems. [Blaze et al.

94

(1996)] proposed the application of automated trust mechanisms in distributed
systems. In [Josang (1996)] the focus is on the strong relationship between the
notions of trust and security. The composition and propagation of trust information
between elements of information systems is also of pivotal concern and a number of
research works are devoted to them (see [Richardson et. al. (2003), Kamvar et. al.
(2003), Guha et. al. (2004)]).

As far as trust in the eGovernment field is concerned, there are efforts targeted at trust
models based on distributed trusted agents such as the PKIs (see [Tassabehji, R. and
Elliman (2006)]). There are many open issues both conceptual and practical,
however, that pertain to eGovernment trust, many of which are discussed in [Kim et.
al. (2005)]. There are fewer attempts, however, for trust management in the eVoting
field. Due to the complexity of an eVoting system, most efforts are focused on the
study of specific system security requirements such as, for instance, establishing
uncoercibility of the voters ([Acker (2004)]. Also, as a common practice for
strengthening trust, many approaches focus on the existence of a voter verifiable
paper copy of the ballot or the design of strong cryptographic protocols (e.g.
[Gritzalis (2003), Smith (2006)]. Finally, the work done by the OASIS consortium
[OASIS (2006)] is a first step towards the standardization of secure eVoting
architectures based on formal modelling and risk assessment methodologies (e.g. use
of the EML language and threat evaluation techniques).

In our efforts to implement an eVoting system that handles these two issues (as
required by a project funded by the Greek Secretariat of Research Technology), we
applied a design and implementation methodology aiming at establishing trust among
people towards the final system (see [Antoniou et. al. (2007)]. Thus, the system was
designed and implemented guided by formal risk analysis and managements
processes, used strong cryptographic protocols, and employed only open source
development tools. Moreover, simulations were conducted as well as a trial using a
mock-up election process in order to provide evidence of its efficiency and security.
In what follows we detail the stages of the adopted methodology showing samples of
the trust-evidence they produce along the way.

2. System architecture and elements
The main architectural features of the target system are the following: (i) A highly
distributed architecture for efficiency and control sharing: an hierarchy of central and
local Election Authorities with distributed computations within an Election Authority,
as depicted in Figure 1. (ii) A robust voting protocol that ensures the basic voting
security requirements (secrecy, receipt-freeness, uncoercibility, verifiability, etc.).
The protocol is based on strong cryptographic primitives, including zero-knowledge
proofs that, essentially, provide the guarantees (without violating the vote secrecy
requirement) that votes are correctly received and included in the voting outcome.

Πρακτικά PCI2008

95

The adopted eVoting protocol is the protocol described by Warren Smith in [Smith
(2006)] which is based on the homomorphic properties of the El Gamal encryption
function and the hardness of computing the discrete logarithm (see [Lenstra and
Lenstra (1990)] for complexity theoretic issues related to this problem).

Figure 1. (a) eVoting system architecture (b) Modules of an Election Authority (EA)

3. Design and implementation

3.1 Trust architecture and risk analysis
Our approach relies on two general methodologies and one eVoting specific protocol.
The two methodologies is the layers of trust decomposition of a system (see
[KLSSY04, [KLSSY05]) and the CORAS risk assessment framework for security
critical systems (see [CORAS03]). Below we will provide a brief account of these
two elements of the approach

The layers of trust view of the eVoting system is a view complementary to the other
formal views and models of ordinary IT systems (e.g. business view, technical view
etc.) and is employed in order to handle the complexity of the security issues
pertaining to eVoting, as defined by its security requirements. This complexity can be
as high as the complexities that arise in other architectural views of such systems and
the layers of trust approach can be used as a tool for managing these issues
successfully.

The role of the layers, and the correspondence to the e-voting system, is as follows
(see [Konstantinou et. al. (2005)]: 1) Scientific soundness: All the components of the
system should possess some type of security justification (strong cryptographic
primitives) and be widely accepted within the scientific community. 2)
Implementation soundness: A methodology should be adopted that will lead to the
verification of the implementation of the separate system components as well as the
system as a whole. In addition, such a verification methodology should be applied

96

periodically to the system. 3) Internal operation soundness: The design and
implementation should offer high availability and fault tolerance and should support
system self-auditing, self-checking, and self-recovery from malfunction. 4) Externally
visible operational soundness: It should be possible for everyone to check log and
audit information at some level. 5) Convincing the public (social side of security): It
is crucial for the wide acceptance of the eVoting system that the public will trust it
when it is in operation. This trust can be, in general, amplified if the eVoting
authority publicizes the details of the design and operation of the eVoting system to
the public.

With regard to risk analysis, it is complementary to the trust architecture outlined
above and it is applied to identify and treat risks that may exist in the target system.
We applied the CORAS risk analysis methodology (see [Stølen et. al. (2003)] which
is based on the RM-ODP standard ([Putman (2000)]). The first step is the Context
Identification. This step involves a detailed description of the system under study
(application scenario, assets, data flows) using the UML modeling language (see, e.g.,
[Krutchten (1999)]). The description uses various different types of UML diagrams,
depicting different system aspects. The aim is to gain a good understanding of the
system and document it using visual means. The diagrams that we used include Use
case diagrams that show system functionality, Activity Diagrams that describe
workflows, Time Sequence Diagrams (see example in Figure 2) that describe the
exchange of data among stakeholders per time. System assets were also evaluated
with regard to their criticality.

Figure 2. Time Sequence Diagram

Πρακτικά PCI2008

97

The next step is the Risk Identification. This step aims at the identification and
documentation of the threats that the system faces, using appropriate Threat
Diagrams. A HazOp analysis is performed to provide a first level assessment of
threats and propose initial countermeasures. For the most critical threats among the
ones identified, a Fault Tree Analysis is performed to identify events that cause the
specific threats. Two examples of the diagrams used in this step are shown in Figures
3 and 4.

Insufficient SecurityFinal result AlterationHacker

Insufficient SecurityVote AlterationHacker

Lack of monitoring during
remote vote casting

Voter coercingCoercer

Corrupted ΕΑResult AlterationEA

Software ErrorTallying errorEA

Corrupted ΕΑVote disclosureEA

Corrupted ΕΑVote AlterationEA

Malicious VoterDisclosure of credentials (id, password,
πιστοποιητικό) to another person

Voter

Corrupted Keyholders
(software)

Disclosure of secret keysKeyholders

What makes it
possible?

How? What is the incident? What
does it harm?

Who/what causes it?

Insufficient SecurityFinal result AlterationHacker

Insufficient SecurityVote AlterationHacker

Lack of monitoring during
remote vote casting

Voter coercingCoercer

Corrupted ΕΑResult AlterationEA

Software ErrorTallying errorEA

Corrupted ΕΑVote disclosureEA

Corrupted ΕΑVote AlterationEA

Malicious VoterDisclosure of credentials (id, password,
πιστοποιητικό) to another person

Voter

Corrupted Keyholders
(software)

Disclosure of secret keysKeyholders

What makes it
possible?

How? What is the incident? What
does it harm?

Who/what causes it?

Figure 3. Part of High-level Risk Table

1

Disclosure by Voter
himself

2

Error in Voter Client
software

3

Malicious software in
Voter's PC

2

Disclosure by Voter

4

SSL failure

3

Tapping through
transmission

5

Malicious EA (Vote
Manager)

6

Malicious sof tware in
EA (Vote Manager

Module)

4

Disclosure by EA
(Vote Manager)

1

Disclosure of
encrypted Vote M

Μ: El Gamal
encryption

of ballot

Figure 4. Fault Tree Diagram

Then we apply the Risk Analysis step. This step aims at estimating the risks that are
caused by the threats identified in the previous step. At first, we defined the levels of
scale of the various sizes that are used in the risk analysis (i.e. likelihood of event

98

occurrence, consequence and risk). Then, we estimated the amount of risk
(quantitatively or qualitatively using Fault Tree Analysis). Tables 1 and 2 presented
below are parts of the full tables compiled during our analysis.

Table 1. Assessment of likelihood of occurrence of unwanted incidents

0,05Malicious software in Election Authority (vote manager)6

0,05Malicious Election Authority (vote manager)5

Disclosure by Vote Manager

0,1SSL failure 4

Tapping during transmission

0,1Malicious software in Voter’s PC3

0,1Voter software error2

0,05Disclosure of Vote by Voter1

Disclosure by Voter

LikelihoodDescriptionEvent

0,05Malicious software in Election Authority (vote manager)6

0,05Malicious Election Authority (vote manager)5

Disclosure by Vote Manager

0,1SSL failure 4

Tapping during transmission

0,1Malicious software in Voter’s PC3

0,1Voter software error2

0,05Disclosure of Vote by Voter1

Disclosure by Voter

LikelihoodDescriptionEvent

Table 2. Qualitative assessment of Consequence using FMEA
ID Function/

Entity
Failure Mode Effects Causes Consequences

Local System
wide

1 GenerateElGamalParameters
(size)

Size parameter is
not available in
system config file

The public
parameters
may not be
created

System
initialization is
not possible

Config file is not
properly updated
by system
administrator.
Access to config
file/database is
not possible

Voting process
may not begin

2 Publish(elGamalParameters) Bulletin Board is
not updated with
the public
parameters

Keyholders
may not
produce keys

System
initialization is
not possible

Connection to
database is not
possible

Voting process
may not begin

Then we have the Risk Evaluation step. This step includes the evaluation of system
risk, based on the previous analysis and the risk levels defined. The evaluation results
are presented in the risk categorization matrix, as shown in the Table 3.

Table 3. Risk Categorization Matrix.
Consequence

Value
Likelihood Value

Rare Unlikely Possible Likely Certain

Insignificant

Minor 4, 10, 12, 30, 31 29, 32, 34, 35,
36, 39, 40 14

Moderate 3 8, 22

Major 1, 9, 21, 23, 26,
27

7, 17 , 20, 24, 25,
28, 33, 37 13

Catastrophic 2, 5, 11, 47
6, 15, 16, 18,
19, 41, 43, 44,
45, 46

38, 48, 49 42

The numbers appearing in Table 3 correspond to the risks that were identified and
analyzed in the previous steps. The risks are classified from acceptable (white area) to

Πρακτικά PCI2008

99

extreme (dark gray area). For instance, risk No 42 corresponds to “Multiple,
timestamped votes do not arrive in the same sequence they were submitted”. This risk
is considered to be extreme, since it has high occurrence likelihood and catastrophic
consequences.

Finally, we have the Risk Treatment step. This last step of the methodology involves
decisions to be taken about prioritizing and treating the identified risks, based on the
aforementioned categorization. Specific countermeasures are proposed for each risk,
with emphasis on extreme risks. Table 4 is an excerpt of the risk treatment table,
showing some security risks and the proposed treatments.

Table 4. Risk Treatment Table

Some of the conclusions reached through the application of CORAS were the
following. In general, the adopted voting protocol, as well as many of the engineering
decisions made during the design of the system, was proved to be reasonable choices
since it was found to handle well all the threats discovered through the application of
CORAS. The protocol employs threshold cryptography, suitably time-stamped
multiple votes, use of Zero Knowledge Proofs for validating the encrypted votes etc.
Also, the analysis indicated aspects of the initial design that were further enhanced
(e.g. web access vs. client server access, SSL vs. VPN between the voter and the
Election Authority, etc.).

3.2 System components
The full system is comprised of a number of cryptographic libraries, open source
tools related to IT security and a number of web interfaces that allow system set-up
and initialization as well as vote submission.

The implementation of the central EA is based on the following: Ubuntu Linux, Java
Runtime Environment (JRE), PostgreSQL Server, Java crypto libraries (Bouncy
Castle), JDBC Driver for PostgreSQL, Server clock synchronization with a legal NTP
server, OpenVPN (VPN Server), and OpenCA. The implementation of the local EAs

100

are based on the following: Ubuntu Linux, Apache Tomcat 5.5, Java crypto libraries
(based on Bouncy Castle), JDBC Driver for PostgreSQL, Server clock
synchronization with an authorized NTP (Network Time Protocol) server, and
OpenVPN (VPN Client). With regard to the web interfaces, they are based on three-
tier architecture: Presentation, Application and Data Tier. The presentation tier is
related to the web browser, the application tier is related to the application server
(Apache Tomcat in our case) and the data tier is related to the database server
(PostgreSQL in our case). The web interface implementation is based on the
technology of Java Server Pages (JSP). In order to set-up and operate a voting
process, the following components must be activated: VPN connections between the
central and the local EAs, the OpenCA software on the central EA, and the Apache
Tomcat software item on the local EAs. First the voter sends a request to the Tomcat
application server which is appropriate local EA. The server executes the code and
sends the responses to the voter. The communication is realized using the HTTPS
protocol. The certificate for this communication is distributed by the EA’s
Certification authority. The voter submits his vote and the vote is encrypted and
stored in the local EA’s database. Simultaneously, the vote is forwarded to the central
EA’s database. The communication between local and central EAs’ databases is
realized through a VPN.

4. System evaluation

4.1 Performance simulation
In order to evaluate the dynamics as well as performance of the distributed eVoting
architecture, we modeled it as an open Jackson network of queues. This type of
networks is characterized by constant expected incoming packet rates and
exponentially distributed service rates. The constant incoming packer rate, however,
is not realistic for networks supporting elections, If we assume, for instance, that the
voting process spans an interval from 8:00 to 20:00, then we expect a low voter
arrival rate in the morning that reaches a peak around noon and then decreases up to
the time when the election ends. That is, the expected arrival rate is not uniform over
the voting period but, rather, follows a unimodal distribution. This behaviour is
supported from empirical evidence although a statistical analysis during a real
election process should be performed for accurate results. For the purposes of our
project we have developed a simulation tool in C based on the simulation package
CSIM 19 of Mesquite. This tool can be used for modelling and simulating any
distributed architecture based on the open Jackson model. The tool offers a wide
range of user-settable model parameters for describing the characteristics of the
distributed architecture as well as performance metrics.

4.2 Trials

Πρακτικά PCI2008

101

The objective of the pilot was to assess the overall operation of the system, to validate
the adopted architecture and to test the integration among the chosen third-party open
source tools. A further objective was to obtain a feedback from actual users/voters
with regard to system functionality and security. Finally, the pilot was used as a
vehicle towards a gradual introduction of the system to election scenarios of a larger
scale. With regard to the mock-up election process, the goal was engage 200 of the
members of the Western sector of the Technical Chamber of Greece. This group was
selected due to the easiness of conducting its members and the fact that, being
engineers themselves, they could follow the voting instructions easily and pinpoint
technical difficulties with the system. In addition, the Technical Chamber is interested
in automating its voting procedures and, thus, it was a good target for the system
trials. The overall impression was positive and the feedback received is already under
consideration for further improvements and enhancements of the system.

5. Discussion
In this paper we summarized the design, implementation, and evaluation
methodologies that led to the development of a secure, distributed eVoting platform
capable of supporting large scale election processes. Our main efforts were towards
the increase of trust-related propertied of the final system. To this end, we used
formal design and risk analysis methodologies that, also, produced ample
documentation and system models along the way, so that the final system would be
easy to inspect and understand. In addition, the whole system was based on open
source tools and software. The system has been successfully used to perform a mock-
up election process set-up for the Technical Chamber of Greece. We believe that our
approach can be further formalized and used in other efforts for building secure
eVoting systems with an eye towards public system verifiability and transparency.

References
Antoniou, A., Korakas, C., Manolopoulos, C., Panagiotaki, A., Sofotassios, D.,

Spirakis, P. and Stamatiou, Y. C., A Trust-Centered Approach for Building E-
Voting Systems, Lecture Notes in Computer Science, Volume 4656, 2007, pp. 366-
377, Springer Berlin / Heidelberg.

Acker, B. van, Remote e-Voting and Coersion: A risk Assessemnt Model and
Solutions, in: Electronic Voting in Europe - Technology, Law, Politics and
Society, LNI Proc., pp. 53 – 62, GI-Editions, 2004.

Blaze, M., Feigenbaum, J., and Lacy, J., Decentralized trust management, in: Proc.
IEEE Symposium on Security and Privacy, Oakland (CA, USA), 1996, pp. 164-
173, 1996.

CACM, The problems and potentials of voting systems, Communications of the ACM,
Special Issue on eVoting 47(10), October 2004.

102

Gritzalis, D.A., Secure Electronic Voting, Series: Advances in Information Security,
Vol. 7, Kluwer Academic Publishers, 2003.

Guha, R., Kumar, R., Raghavan, P., and Tomkins, A., Propagation of trust and
distrust, in: Proc. International Conference on WWW, pp. 403-412, 2004.

Krutchten, P., The Rational Unified Process, An Introduction, Addison-Wesley, 1999.
Josang, A., The right type of trust for distributed systems, in Proc. New Security

Paradigms Workshop, pp. 119-131, 1996.
Kamvar, S.D, Schlosser, M.T., and Garcia-Molina, H., The eigentrust algorithm for

reputation management in p2p networks, in: Proc. International Conference on
World Wide Web, pp. 640-651, 2003.

Lenstra, A.K. and Lenstra., H.W. JR., Algorithms in number theory, in: J. van
Leeuwen, ed., Handbook of Theoretical Computer Science, vol. A North-Holland,
Amsderdam, pp. 673-715, 1990.

Putman, J. R., Architecting with RM-ODP, Prentice-Hall, 2000.
Richardson, M. Agrawal, R. and Domingos, P. Trust management for the semantic

web, in: Proc. International Semantic Web Conference, pp. 351- 368, 2003
Smith, W. D., Cryptography meets voting, living document, version of January 2006.
Kim D.J. Song Y.I. Braynov S.B. Rao H.R., A multidimensional trust formation

model in B-to-C e-commerce: a conceptual framework and content analyses of
academia/practicioner perspectives, in: Decision Support Systems, 40, pp.143-
165, 2005.

Konstantinou, E., Liagkou, V., Spirakis, P., Stamatiou, Y., and Yung, M., Trust
Engineering: from requirements to system design and maintenance – a working
national lottery system experience, in: Proc. Information Security Conference -
ISC 2005, LNCS 3650, Springer Verlag, pp.44-58, 2005.

OASIS Standard, EML Process and Data Requirements, ver 4.0, February 2006.
Stølen, K., den Braber, F., Dimitrakos, T., Fredriksen, R., Gran, B.A., Houmb, S.-H.,

Stamatiou, Aagedal, J. Ø, Model-based risk assessment in a component-based
software engineering process: the CORAS approach to identify security risks,
Chapter in Business Component-Based Software Engineering, Franck Barbier
(ed), Kluwer, 2003, pp. 189-207.

Tassabehji, R., and Elliman, T., Generating citizen trust in e-government using a trust
verification agent: a research note, in: CD-ROM/Online Proceedings of the
European and Mediterranean Conference on Information Systems (EMCIS), Costa
Blanca, Alicante, Spain, 2006.

